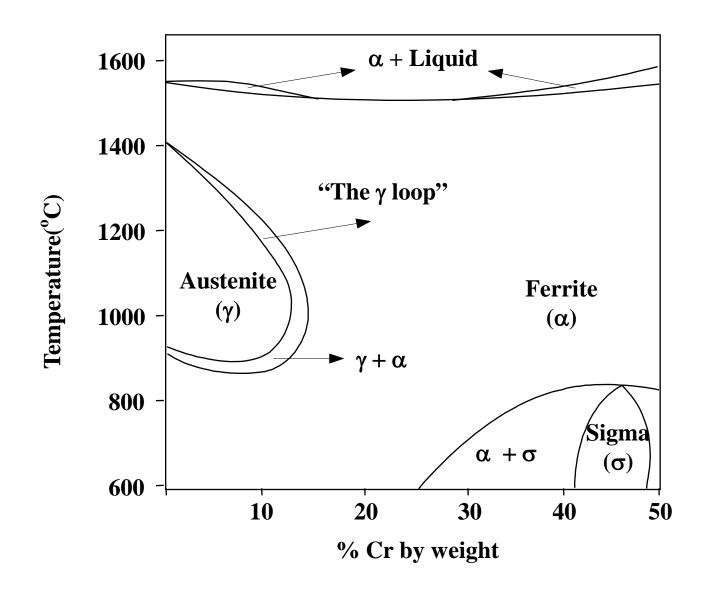
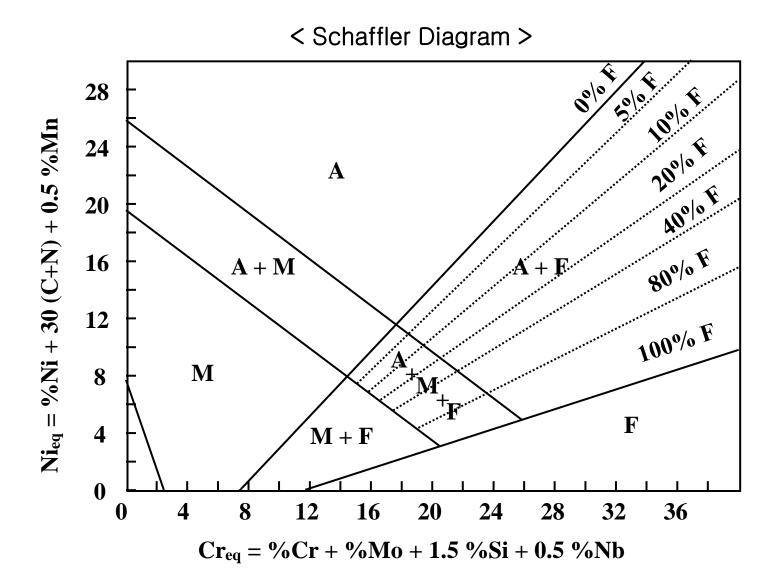

스테레스강 종류 및 특징

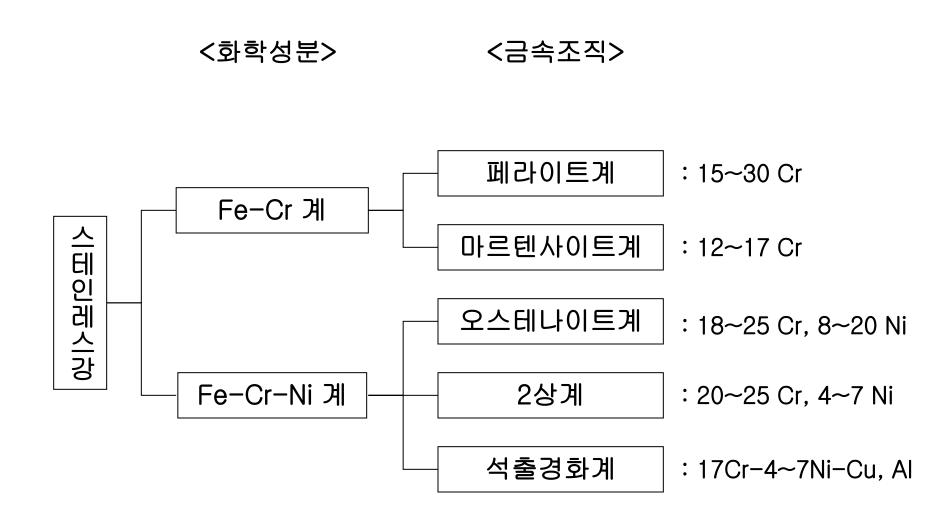
호진테크놀리지



Fe에 Cr 첨가에 따른 내식성

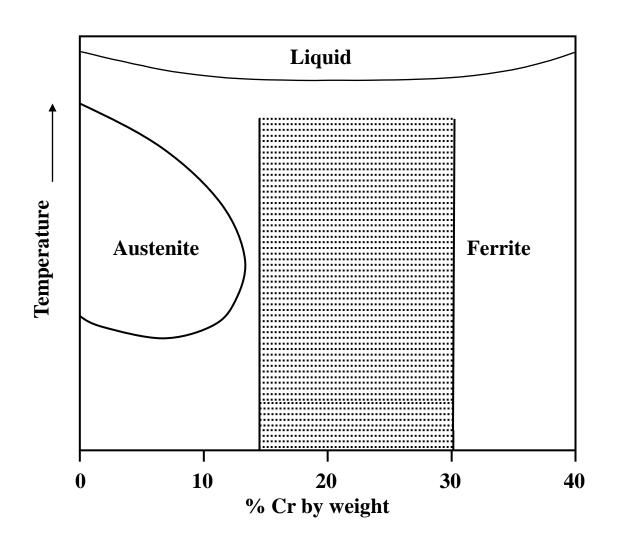


Fe-Cr 의 평형 상태도



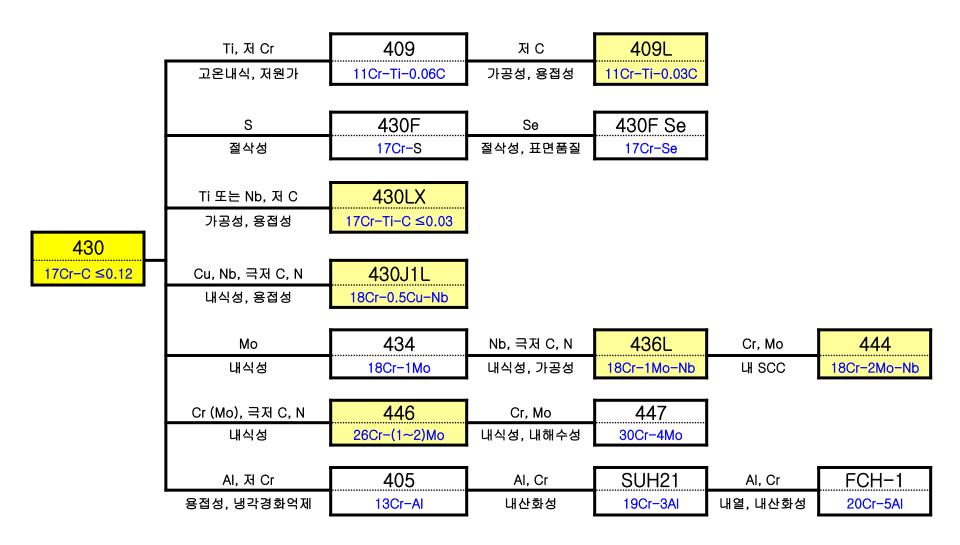
Cr 및 Ni 당량에 따른 조직

화학성분 및 금속조직에 따른 분류



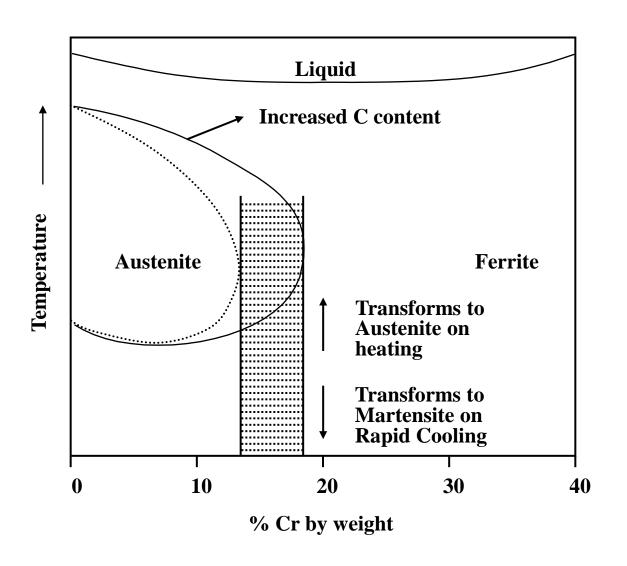
스테인레스 강종별 재질 특성

구분	특징	장점	단점	
마르텐사이트계	○ 강자성체 ○ 열처리 경화 가능	○ 강도가 매우 높음	○ 연성-취성 천이 존재 ○ 용접부 취하 심함	
페라이트계	자성체열처리 경화 없음가공경화성 낮음	○ 냉간 및 고온가공 용이 ○ 열팽창 계수 낮음 ○ IGSCC 저항성 우수	o 고온 및 용접부 취하 - Grain growth o 475℃, 시그마 취성	
오스테나이트계	○ 비자성체 ○ 연성-취성 천이 없음 ○ 냉간가공 경화능 큼	○ 가공과 용접성 우수○ 내식성과 청결성 우수○ 고온강도 높음○ 저온인성 높음	○ CI ⁻ 분위기에서 SCC 위험성 높음 ○ 고합금강은 시그마상 형성가능성 높음	
2상계	o 페라이트와 오스테나 이트 상이 50:50	∘ Cl ⁻ 분위기 에서의 내공식성, 내SCC성 큼 ∘ 고강도로 경량화 가능	∘ 300℃ 이상 사용불가 - 475℃ 취성 상 형성 ∘시그마상 형성	
석출경화계	○ 급냉 및 시효처리를 통한 재질 특성 조절	○ 초고강도, 고경도	○ 연신율이 매우 낮음	



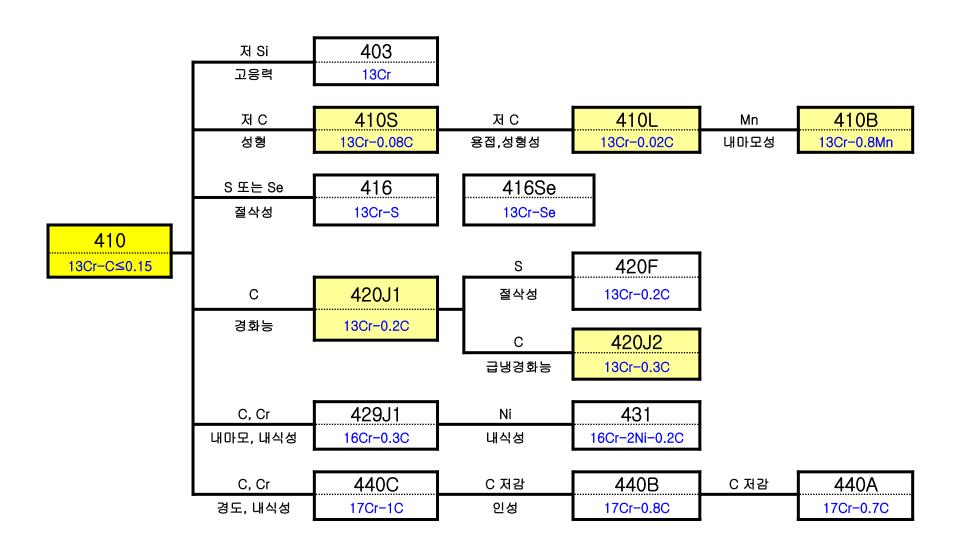
페라이트 계 스테인레스 강의 상태도

페라이트 계 스테인레스 강의 발전 계통도

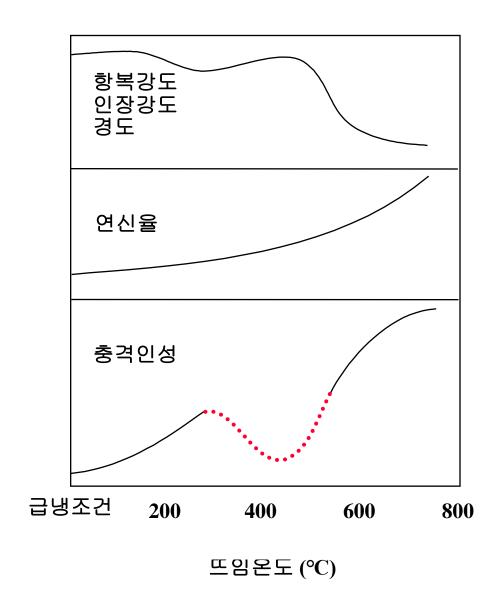

페라이트 계 스테인레스 강

상온 기계적 성질 및 고온강도

온도	430				444			446		
(℃)	Y.S. (MPa)	T.S. (MPa)	El. (%)	Y.S. (MPa)	T.S. (MPa)	El. (%)	Y.S. (MPa)	T.S. (MPa)	El. (%)	
R.T.	345	510	25	340	515	30	345	550	20	
200	1	465	1	1	480	1	1	580	_	
400	1	395	1	1	450	1	1	550	_	
600	-	165	1	-	-	1	1	240	_	
700	-	89	1	-	-	-	1	110	_	
800	-	45	-	-		-	-	55	_	



마르텐사이트 계 스테인레스 강의 상태도



마르텐사이트 계 스테인레스 강의 발전 계통도

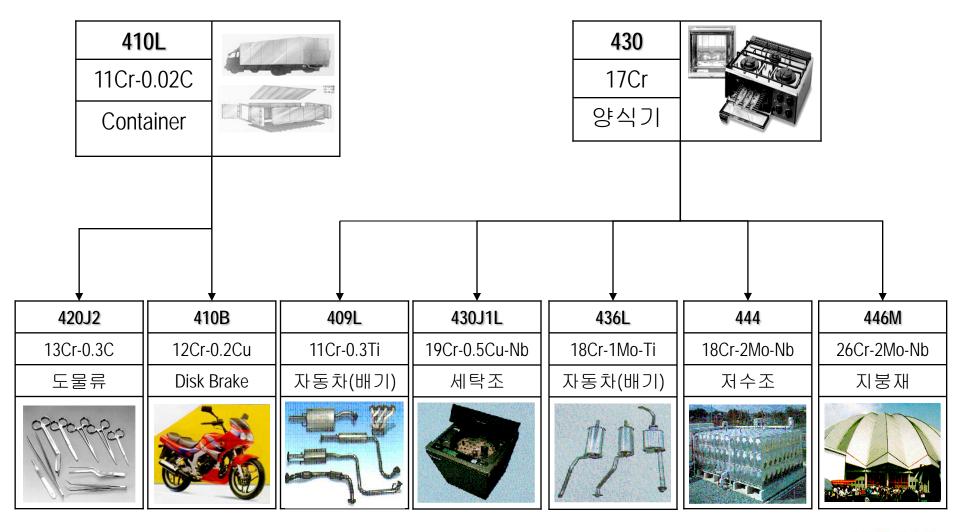
마르텐사이트 계 스테인레스

마르텐사이트 계 스테인레스 강

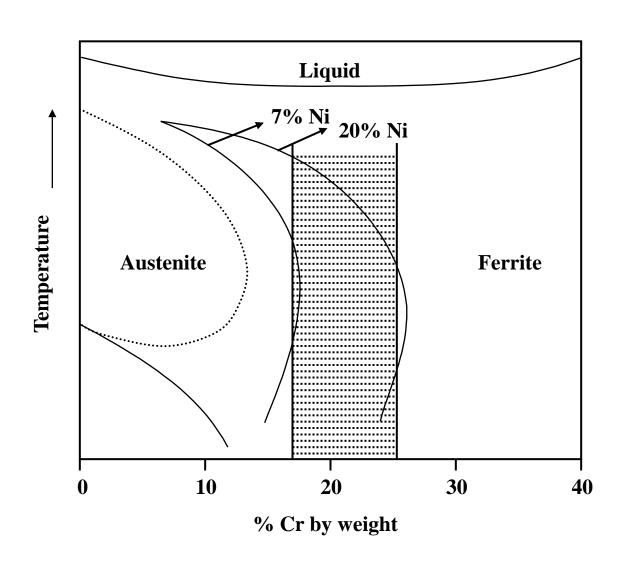
뜨임온도에 따른 기계적 성질

온도	410									
(℃)	Y.S. (MPa)	T.S. (MPa)	경도 (HR)	El. (%)	인성 (J)					
200	1000	1310	C:41	15	47					
315	965	1240	C:39	15	47					
425	1035	1345	C:41	17	-					
538	790	1000	C:31	20	_					
648	585	758	B:97	23	102					

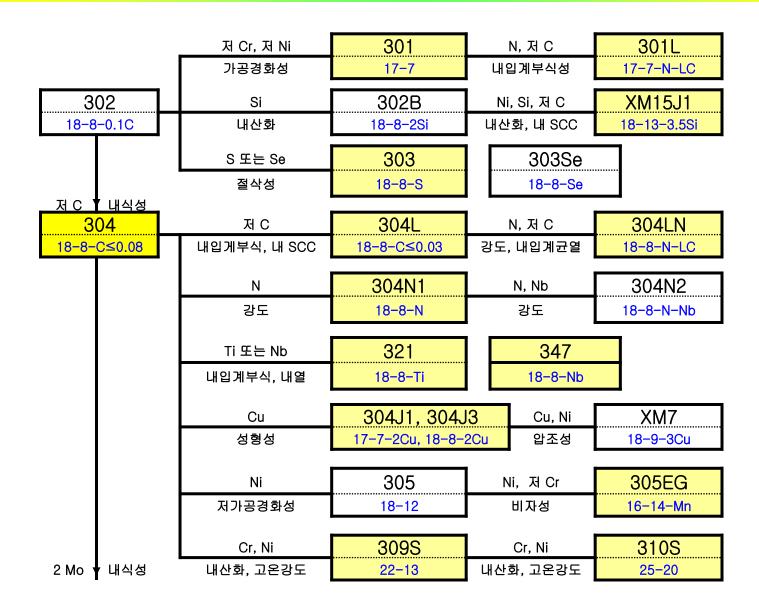
온도	420								
(℃) ਜੁਸ	Y.S. T.S. 경도 (MPa) (MPa) (HR)		_	El. (%)	인성 (J)				
200	1380	1755		10					
315	1345	1725		10					
425	1380	1755	C:48	10	14				
538	1000	1170		15					
648	585	860		20					


온도	431										
(℃) ∓∓	Y.S. (MPa)	T.S. (MPa)	경도 (HR)	El. (%)	인성 (J)						
200	1070	1415	C:43	15	41						
315	1035	1345	C:41	15	61						
425	1070	1415	C:43	15	-						
538	895	1035	C:34	18	_						
648	655	860	C:24	20	68						

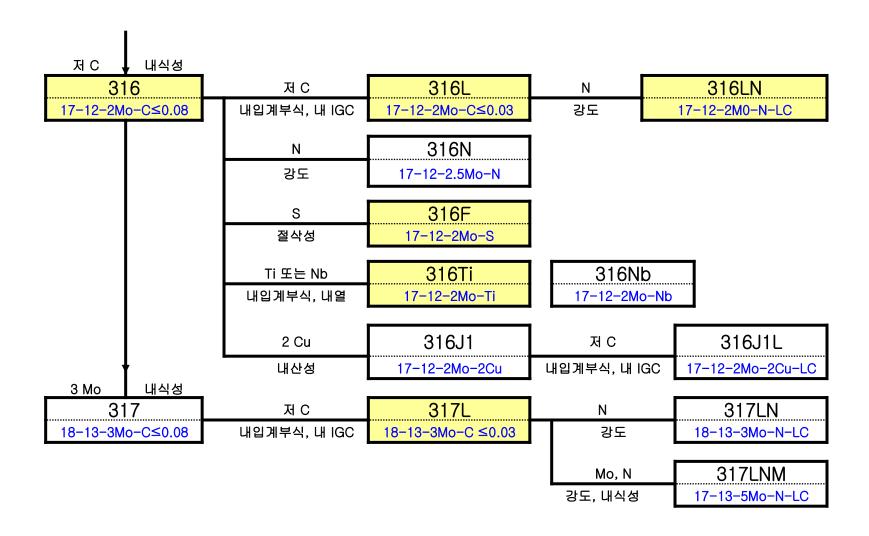
	440 at 315℃								
Grade	Y.S. (MPa)	T.S. (MPa)	경도 (HR)	El. (%)	인성 (J)				
С	1895	1965	C:57	2	3				
В	1860	1930	C;55	3	4				
A	1655	1795	C:51	5	5				


400계 제품별 사용 예

□ Fe-Cr계



오스테나이트 계 스테인레스 강의 상태도



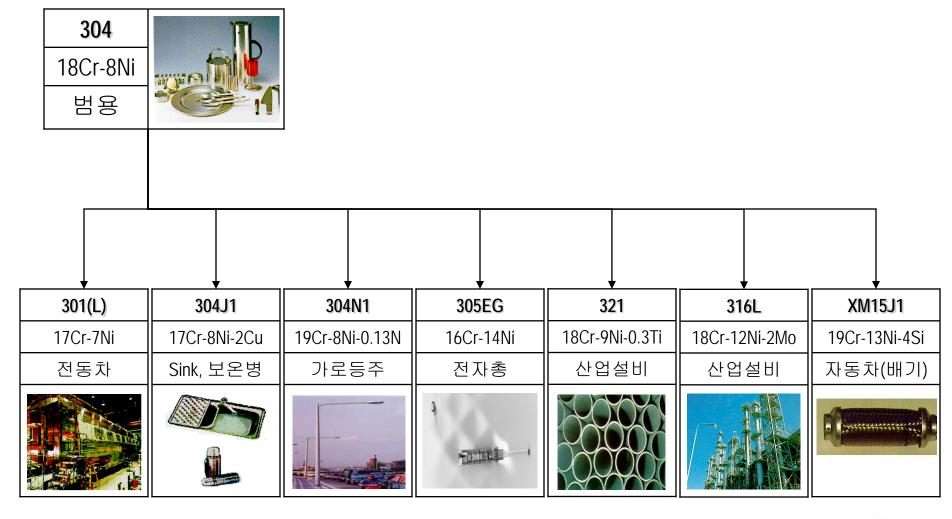
오스테나이트 계 스테인레스 강의 발전 계통도

오스테나이트 계 스테인레스 강의 발전 계통도

오스테나이트 계 스테인레스 강

소둔상태의 항복강도 및 인장강도

강종	301	304	304L	316	316L	309S	310S
Y.S. (MPa)	275	290	270	290	290	310	310
T.S.(MPa)	755	580	560	580	560	620	655


냉간가공량에 따른 항복강도 및 인장강도 변화

강종	강도	냉간 가공량					
0 0	H (0	10%	30%	50%			
201	Y.S. (MPa)	585	1035	1310			
301	T.S. (MPa)	1035	1275	1445			
204	Y.S. (MPa)	480	825	1000			
304	T.S. (MPa)	685	860	1100			
2100	Y.S. (MPa)	470	854	1010			
310S	T.S. (MPa)	744	965	1145			

300계 제품별 사용 예

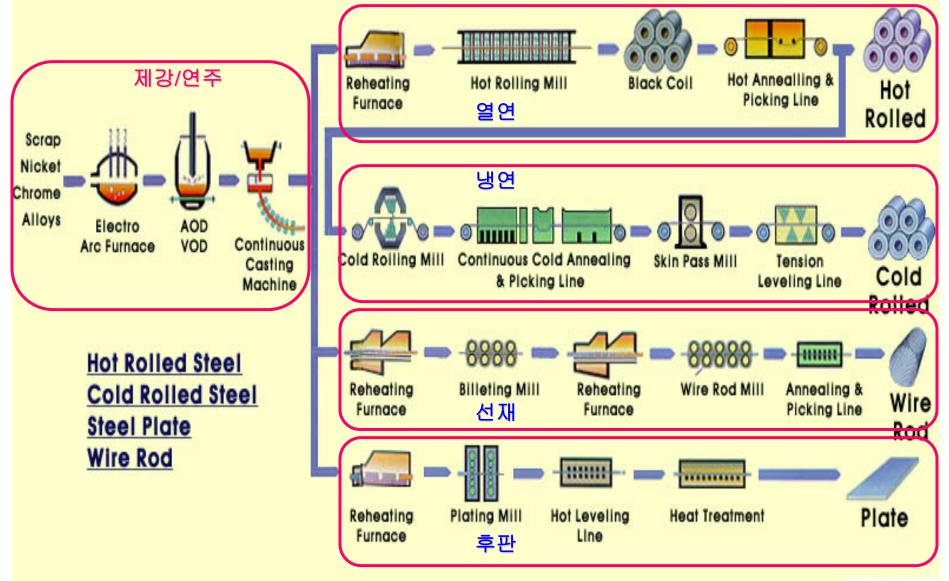
□ Fe-Cr-Ni계

2상계 스테인레스강

Ctool	LINIC		Com	oositio	ns (wt.%	6)	CPT	Strengtl	h (MPa)	El.	Hard'
Steel	UNS	Cr	Ni	Мо	N	etc.	(రి)	Y.S.	T.S.	(%)	(HRC)
2304	S32304	23	4	ı	0.1	ı	~20	≥400	≥600	≥25	≤32
2205	S31803	22	5	2.8	0.15	-	~35	≥450	≥620	≥25	≤32
2205	S32205	22	5	3.1	0.18	ı	~40	≥ 4 50	2020	223	
255	S32550	25	6.5	3	0.18	1.6Cu	~50	≥550	≥760	≥15	≤32
2507	S32750	25	7	3.5	0.27	ı	~70	≥550	≥795	≥15	≤32

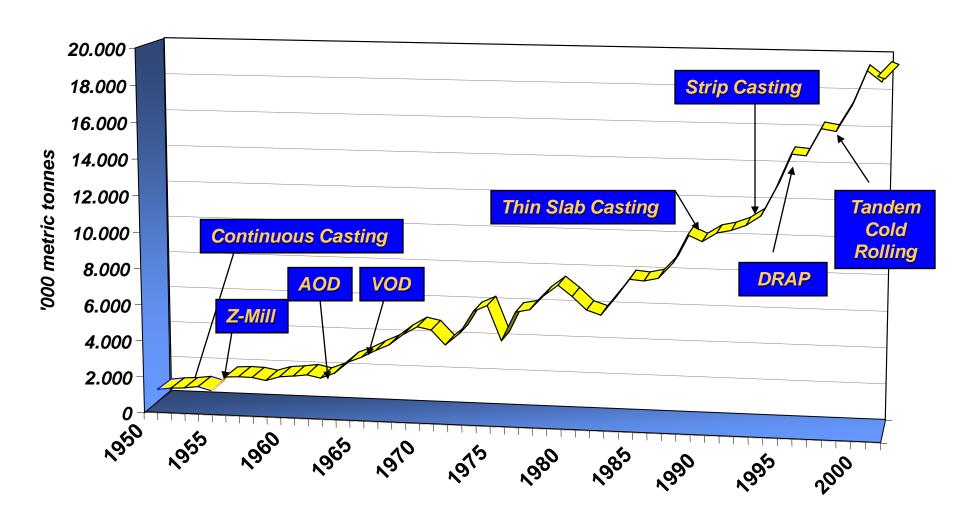
석출경화계 스테인레스강

	С	Cr	Ni	Cu	Al	Nb	I HAST TRASTMANT I I		Haat traatment		Hard' (HRC)
							H900	470~490℃ 급냉	≥1175	≥1310	≥40
STS	< 0.07	17	,			0.15	H1025	540~560℃ 급냉	≥1000	≥1070	≥35
630	≤ 0.07	17	4	4	_	0.45	H1075	570~590℃ 급냉	≥860	≥1000	≥31
							H1150	610~630℃ 급냉	≥725	≥930	≥28
STS	. 0 00	17	7		0.75		TH1050	760±15℃ 90분 유지, 15℃- 30분 (1시간), 565 ±10℃ 90분, 공냉	≥960	≥1140	≥35
631	≤ 0.09	17	7	1	1.5		RH950	955±10℃ 10분, 공냉, -73±6℃ 로 8시간(24시간), 510±10℃ 60분, 공냉	≥1030	≥1230	≥40


강종별 합금원소가 강 특성에 미치는 영향

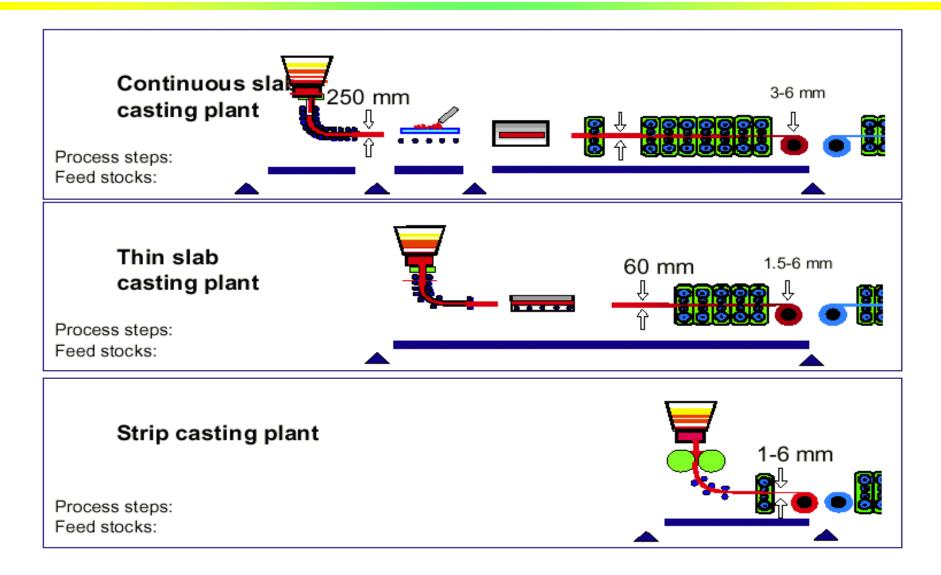
합금 원소	마르텐사이트계	페라이트계	오스테나이트계
С	경화능, 경도, 내마모성 <i>인성, 성형성, 용접성*⁾</i>	내식성* ⁾	내식성, 내 IGC성 내입계부식성* ⁾
N	내식성	<i>용접성*⁾</i>	고강도, 내식성
Ni	내식성		비자성, 내산화성, 고온강도 <i>가공경화성*)</i>
Cr	내식성	내식성, 내열-내산화성	내산화성, 고온강도, <i>비자성*⁾</i>
Мо		내식성	내식성
Si	고응력* ⁾	성형성* ⁾	내산화성, 내 SCC성
Mn	내마모성		비자성, 고강도
Cu		성형성	성형성(압조성), 내산성
Ti, Nb		성형성	내식성, 내입계부식성, 내열성
Al		내열-내산화성	
S, Se	절삭성	절삭성	절삭성

^{*)} 합금원소 저감



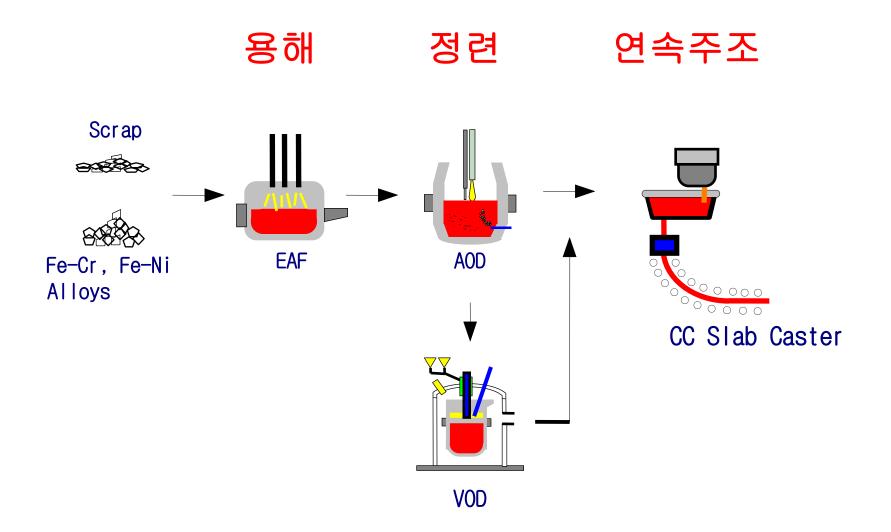
스테인레스 제조공정 Flow

전세계 조강생산 및 제조 기술개발 추이



Growth Rate (1950 ~ 2001) : 6.0 % /Y

■ 전세계 조강능력 증강 (~2005): 450만톤 증가 예상

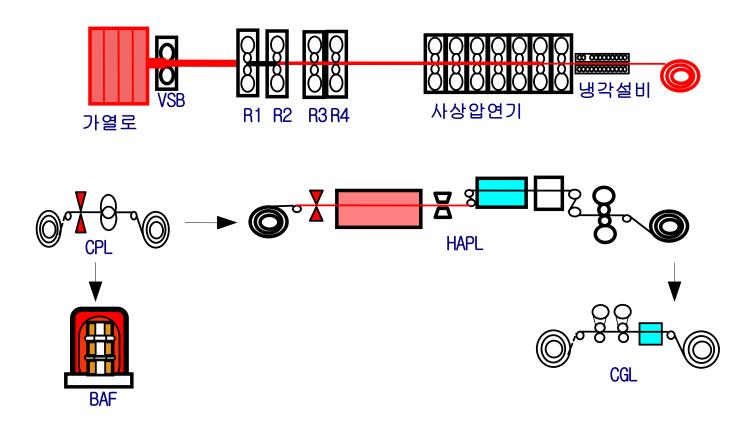


연주 방법에 따른 제조 공정

제강-연주공정

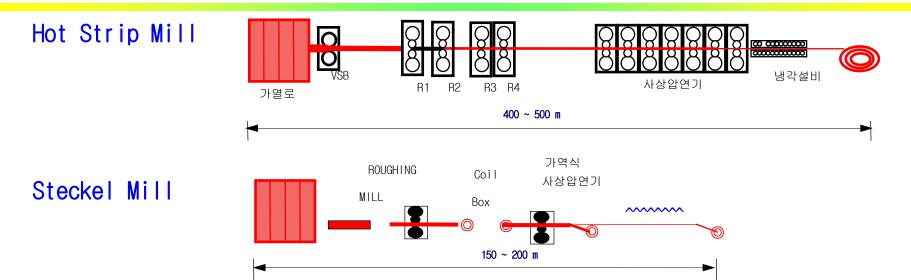
스테인레스 제강 정련법 비교

	AOD	VOD		
C 및 N 한계	< 100ppm	< 50ppm		
S 한계	< 10ppm	< 10ppm		
장∙단점	-고순도강 제조가 어려움 -탈탄, 탈황 비교적 용이 -탈탄범위가 넓음 장입원료조성 선택폭이 큼 -생산성이 우수함	-고순도, 고청정강 제조용이 -극저 C, N 강 제조 용이 -탈탄범위가 좁음 예비탈탄 필요 -생산성이 상대적으로 떨어짐		
설비 비교	Top & Sub-Lance Waste gas Tuyere O ₂ , Ar, N ₂	O ₂ , Sub-Lance		

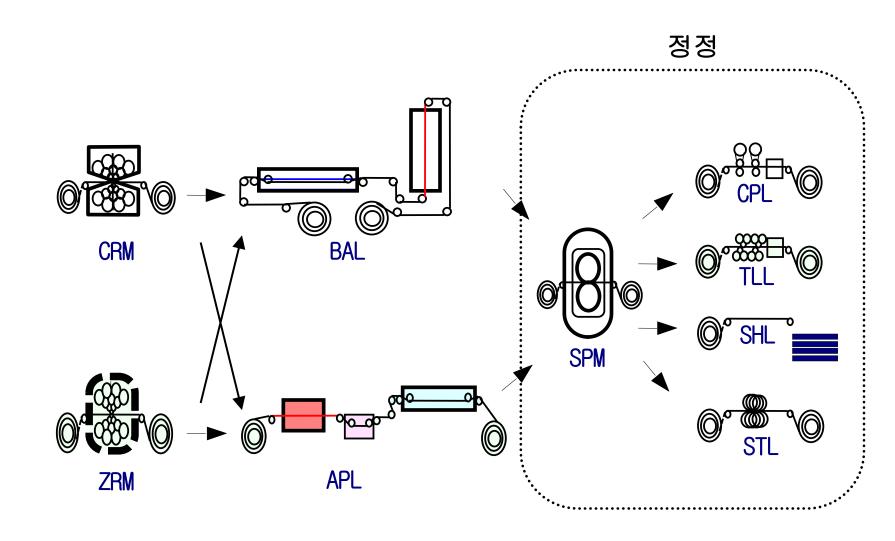


제강-연주 요소기술

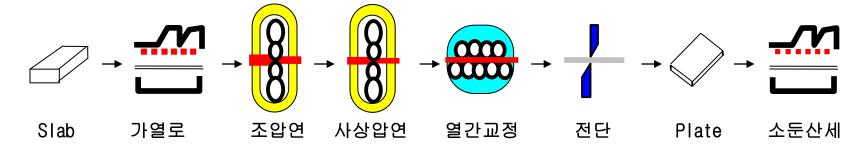
	_				
용해	산소취입	발열(산화)반응에 의한 용해 촉진, 교반에 의한 온도불균일 해소			
	Slag제어	염기도 제어에 의한 불순물 포집능 향상, 유가원소 산화억제			
	Cr 회수	Slag 내의 산화 Cr 회수 (Fe-Si 첨가)			
정	탈탄	산소+불활성가스를 용강 중에 취입하여 탄소를 제거 Cr 산화 억제, 내화물 보호			
0 련	환원	Si 및 Al 을 이용 탈탄 시 산화된 Cr 및 Mn 등의 금속을 환원			
	탈황	Slag 의 염기도(CaO 활량) 및 용강 교반 조건 조절로 탈황			
주 조	주편품질 제어	무산화주조 및 응고조직 제어(등축정율 향상) Slab 내•외부 품질제어(ΔT, 주속, 냉각 pattern, OSC pattern 등)			
	주편관리	Slab grinding, charging (Cold, Warm, Hot) 관리			



열간 압연 및 소둔/산세 공정


열간 압연기

		Hot Strip Mill (전세계 Major Mill 채용)	Steckel Mill (전세계 15개 회사)	
	한국	POSCO	_	
주요	일본	NSC, NSK, KSC	Nippon Metal	
채용회사	미국	Armco, Allegheny	Lukens	
	유럽	Krupp, Bremen, Ugine 등	Acerinox, Outokumpu, Avesta 등	
주요특징		·투자비가 큼 ·대용량, 고속압연 ·일반강과 혼합생산 가능	·투자비가 적고, 건설공기가 짧음 ·극박, 광폭 생산가능 ·압연 Roll 관련 품질문제	


냉간 압연 및 소둔/산세 공정

후판 및 선재 공정

후판

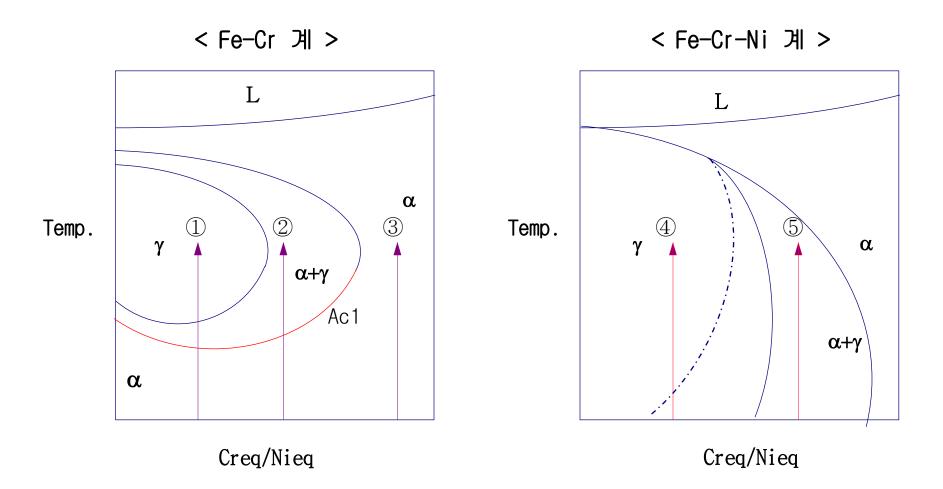
- -STS 전용 압연 Model 운영 기술
- -고합금강 변형율, 압하율 제어기술

강편,선재

- -S, Cu 첨가강 표면결함 제어기술
- -Square 압연 Pass Schedule 설정기술

압연 및 소둔/산세 요소기술

	열 간	냉 간
재가열	•이상산화 및 sulfidation 방지 •δ-ferrite Resolution 및 편석 제어 •강종별 장입 및 가열온도 제어 •Slab 표면 가열로 Scale 제어기술	
압연	・강종별 압연 schedule 설정 (RT4 제어) ・압연 Roll 표면 관리 및 냉각수 제어 ・Coil 권취 형상 제어 ・Soft STS 강의 Sticking 방지	·고속압연기술 ·압연 Pass Schedule 최적화 기술 ·두께 및 형상제어 기술 ·집합조직 제어기술
소둔/산세	·고합금강 열처리/산세 제어 ·고급용 소재의 표면평활도 제어 ·BAF재 내외권부 재질 제어 ·강종별 산 농도 관리	•강종별 소둔온도, 산세조건 설정 •탈지기술 •BA용 소제 선정 및 분위기 관리기술
정정		•SPM : 광택도, 조질도 제어기술 •CPL : 연마벨트 Mesh 관리 •TLL : 형상제어 기술 •SHL, STL : 대각공차, 절단면 관리



제강/압연 (STS 강 vs. 탄소강)

구분			스테인	EL A DL						
	1	-	Aus', Mar'	Fer'	탄소강					
원료			Scrap, Fe-Cr,	철광석						
용선/제강			전기로/ A(고로/ LD						
		열전도도	小	中	大					
		재로시간	90분/100mmt	80분/100mmt	70분/100mmt					
	TII DI CH	고온강도	大	小	中					
	재가열	가열온도	1250~1270℃	1210~1250℃	~1230°C					
열		Scale 생성	小	大	大					
		관리 Point	입계산화방지	결정립 조대화방지	과열에 의한 Scale 흠 방지					
간	압연	변형저항	大	小	小					
							온도(RT4)	1100~1120℃	~1060℃	~1040℃
		Roll 재질	High Speed Steel Roll		Hi-Cr Roll					
		관리 Point	온도관리 철저 (냉 각수 drop 등)	설비관리 철저 (Scratch 방지)	압연온도제어 (재질확보)					
	연	변형저항	大		小					
냉		Mill Type	Reversing 압연 (Z-mill) - 高 압하효율 -		연속압연(Tandem) - 생산/작업성 大 -					
간		Roll Dia		40~60ton	400~500mm, 10~20ton					
		장점	표면품질제어		소 lot 대량생산					

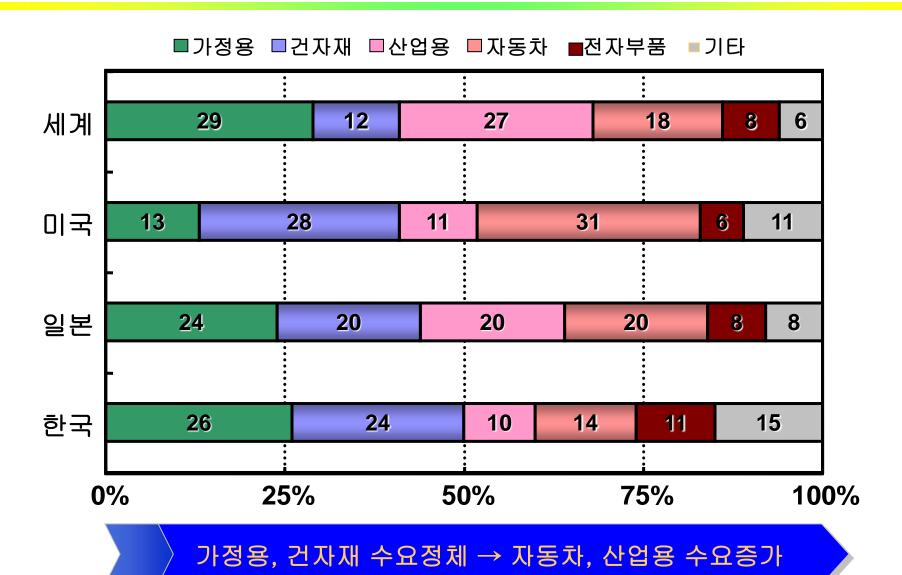
소둔 시 합금 성분계에 따른 상변태

강종별 열처리 방법 및 목적

-					
강종	강종 Case 압연 후/ <mark>열처리/냉각</mark> 시 상변태		열처리 방법 및 목적		
마르텐	①	$\alpha' + \alpha \rightarrow \alpha + \gamma \rightarrow \gamma \rightarrow \gamma + \alpha \rightarrow$	○ BAF 소둔 (Ac1 이하에서 장시간)		
사이트계		$\alpha' + \alpha$	○ 재질연화 및 탄화물 구상화		
	2	$\alpha \rightarrow \alpha + \gamma \rightarrow \alpha + \alpha'$	○ BAF 소둔 (Ac1 이하에서 장시간)		
페라이트)		ο 재질연화 (α' 상변태 방지)		
계	3		○ 고온 연속소둔		
		$\alpha \rightarrow \alpha \rightarrow \alpha$	○ 재질연화		
오스테	4		○ 고온 연속소둔		
나이트계		$\gamma \rightarrow \gamma \rightarrow \gamma$	○ 재질연화 및 탄화물/석출물 고용		
OVENI	(5)		○ 고온 연속소둔		
2상계		$\alpha + \gamma \rightarrow \alpha + \gamma \rightarrow \alpha + \gamma$	○ 재질연화 및 탄화물/석출물 고용		
	4	$\alpha' + \alpha \rightarrow \gamma + \alpha \rightarrow \gamma \rightarrow \gamma + \alpha \rightarrow$	○ 고온 연속소둔		
석출경화		$\alpha' + \alpha$	○ 후속 conditioning 열처리		
계	(A)		(γ → γ + carbide) 에 의한 Ms		
	.		온도 상승으로 재질 조정 가능		

강종별 소둔 Specification

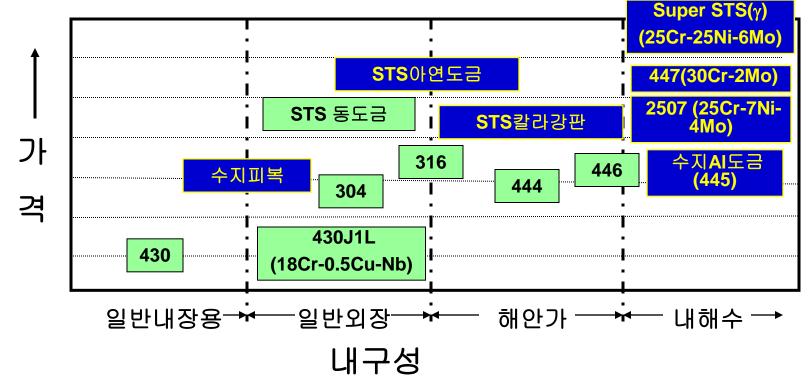
	강 종	KS, JIS		ASTM	
오스테	(301, 304, 316, 317)계열 302, 305, 309S, 310S, XM15J1	1010~1150℃, 급냉		≥ 1038℃, 급냉	
나이트	316Ti, 321	920~1150℃, 급냉	850~930℃	≥ 1038℃, 급냉	
	347	980~1150℃, 급냉	안정화처리	(≤ 982℃ 안정화처리)	
	329J1, 329J3L, 329J4L	950~1100℃, 급냉		-	
0.44	S32304	-		≥ 980℃, 급냉	
2상	S31803	_		≥ 1038℃, 급냉	
	S32750	-	1025~1125℃, 급냉		
	405	780~830℃, 급냉 또는 서냉			
	410L	700~820℃, 급냉 또는 서냉			
페라	429, 430, 434	780~850℃, 급냉 또는 서냉			
이트	430LX	780~950℃, 급냉 또는 서냉			
	409L, 430J1L, 436L, 444 800~1050℃, 급냉			기계적 특성 만족하는 수	
	447J1, XM27	7J1, XM27 900~1050℃, 급냉			
마르텐	403, 410, 410S	약 750℃ 급냉 또는 80	0~900℃ 서냉		
사이트	420J1, 429J1, 420J2, 444A	약 750℃ 공냉 또는 80			
석출	630	1020~1060℃, 급냉			
경화	631	1000~1100℃, 급냉			



소문/산세(STS 강 vs. 탄소강)

		구분	스테인레스강			탄소강	
			소둔/산세 방법 강종 및 상변태 정도에 따라 구분				
		고저	연속소둔(H-AP)		상소둔(BAF)		
		공정	Aus', 2상계	Fer'	Fer'	Mar,	
열	소	분위기	산화성 (O ₂)		환원성 (H ₂)		
	뚠	온도 및 시간	~1120℃	~1000℃,	~820℃,	~860℃,	無
간			2~3분,	2~3분	20시간	20시간	
		냉각	수냉		공냉	로냉	
	산	Soolo 레刀	1차 : 황산		1차 : 황산		
	세	Scale 제거	2차 : 고농도 질산-불산		2차 : 저농도 질산-불산		
			소둔/산세 방법 소재 두께		및 산화성에	따라 구분	구분 없음
	내 ト	공정	연속소둔 (C-AP)		연속광휘소둔 (BAL)		연속소둔 (CAL)
냉		분위기	산화성 (O ₂)		환원성 (H ₂)		비산화성 (N ₂)
0		온도 및 시간	1000~1150℃, 2~3분,			700~850℃	
간		냉각 수냉		분위기 급냉		급냉	
	산 세		1차 : Salt bath		無		
			2차 : 황산		(압연 시 형성된		염산
			3차 : 질산-불산		高 광택 표면 유지)		

STS강 수요산업별 소비구조 (300계 + 400계)

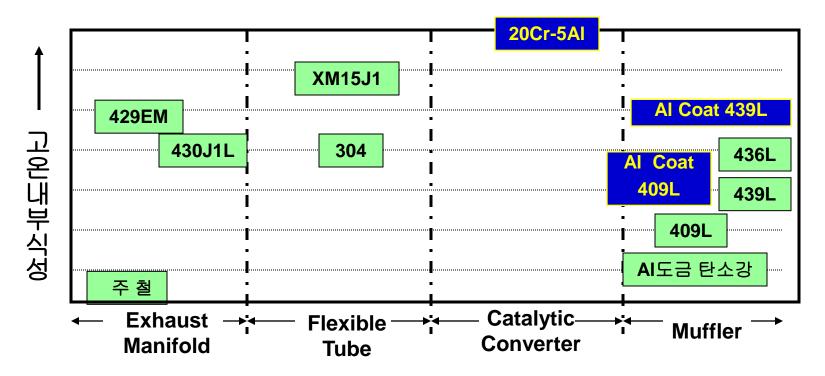


건자재용

● 주요용도 : 건축물 내외장재, 지붕재, 구조재,구조용 pipe재

• 요구특성 : 내식성, 의장성, 저열팽창계수, 시공성, 저 life cycle cost 내지문성, 내산화성, 고강도

• 신제품 개발 추이 및 개발 현황



자동차 배기계용

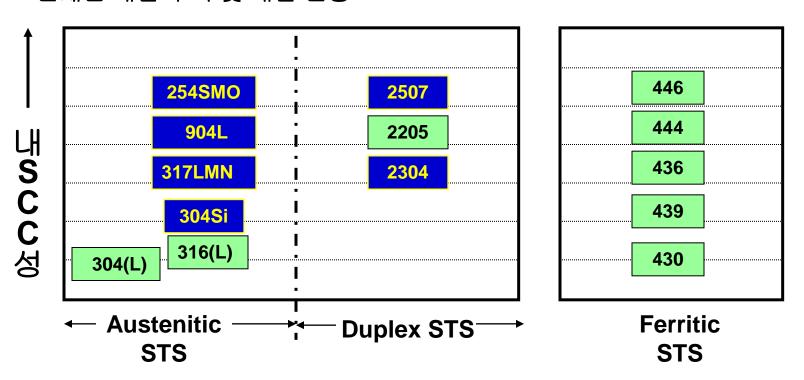
●주요용도 : Exhaust Manifold, Flexible Tube, Catalytic Converter, Muffler

●요구특성: 내산화성, 내열 피로성, 내고온염 부식성, 가공성, 용접성 내응축수 부식성


●신제품 개발 추이 및 개발 현황

고강도 구조용

- 주요용도: 차량 구조, 건축/토목 구조, 내마모 구조, 비자성 구조
- 요구특성: 고강도, 저 Life cycle Cost, 성형성, 용접성, 내피로특성. 내식성
- 신제품 개발 추이 및 개발 현황



온수기용

• 주요용도 : 온수기기

• 요구특성: 내공식성, 틈부식 저항성, 응력부식저항성

• 신제품 개발 추이 및 개발 현황

